Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method

نویسندگان

  • André Fujita
  • João Ricardo Sato
  • Humberto Miguel Garay-Malpartida
  • Pedro Alberto Morettin
  • Mari Cleide Sogayar
  • Carlos Eduardo Ferreira
چکیده

MOTIVATION A variety of biological cellular processes are achieved through a variety of extracellular regulators, signal transduction, protein-protein interactions and differential gene expression. Understanding of the mechanisms underlying these processes requires detailed molecular description of the protein and gene networks involved. To better understand these molecular networks, we propose a statistical method to estimate time-varying gene regulatory networks from time series microarray data. One well known problem when inferring connectivity in gene regulatory networks is the fact that the relationships found constitute correlations that do not allow inferring causation, for which, a priori biological knowledge is required. Moreover, it is also necessary to know the time period at which this causation occurs. Here, we present the Dynamic Vector Autoregressive model as a solution to these problems. RESULTS We have applied the Dynamic Vector Autoregressive model to estimate time-varying gene regulatory networks based on gene expression profiles obtained from microarray experiments. The network is determined entirely based on gene expression profiles data, without any prior biological knowledge. Through construction of three gene regulatory networks (of p53, NF-kappaB and c-myc) for HeLa cells, we were able to predict the connectivity, Granger-causality and dynamics of the information flow in these networks. SUPPLEMENTARY INFORMATION Additional figures may be found at http://mariwork.iq.usp.br/dvar/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Granger Lasso Causal Models in Higher Dimensions - Application to Gene Expression Regulatory Networks

Granger causality (GC), based on a vector autoregressive model, is one of the most popular methods in uncovering the temporal dependencies among time series. The original Granger model is able to detect only linear causal dependencies and many approaches were recently developed to extend it to the non-linear modeling. The method Copula-Granger from Bahadori and Liu in 2012 introduces non-linear...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...

متن کامل

A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality.

Functional magnetic resonance imaging (fMRI) is widely used to identify neural correlates of cognitive tasks. However, the analysis of functional connectivity is crucial to understanding neural dynamics. Although many studies of cerebral circuitry have revealed adaptative behavior, which can change during the course of the experiment, most of contemporary connectivity studies are based on corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 23 13  شماره 

صفحات  -

تاریخ انتشار 2007